Investor day

Innovation: serving the Habitat strategy

Didier Roux

Paris, 15 November 2010

SAINT-GOBAIN

Innovation in the Habitat market

Didier Roux

1.2.1

Energy and the environment: A strategic concern for Saint-Gobain

Contents

Introduction

• Habitat and the challenges facing our planet...

Strategic, cross-business programs in response to changing market needs

Increased resources

Budget, patents, research centers, looking outward...

Conclusion

SAINT-GOBAIN

People will have used fossil fuels for only a very short period in the history of mankind

The green house effect

Vostok Curve

In conclusion

We need to:

• prepare for the end of fossil fuels

- Slow down consumption
- limit CO₂ emissions

This means:

- saving energy
- identifying renewable energy sources

Energy and the environment

Energy use in Europe

Millions of tons oil equivalent (Mtoe)

Energy consumption in buildings

kWhpe/m²/year

Europe/USA Potential savings > 500 Mtoe (25%)

Contents

Introduction

• Habitat and the challenges facing our planet...

Strategic, cross-business programs in response to changing market needs

Increased resources

Budget, patents, research centers, looking outward...

Conclusion

Strategic, cross-business programs

Strategic research programs to save energy

- Strategic research programs to develop renewable energy sources
- Cross-business programs

Strategic research programs to save energy

- High performance insulation
- External insulation
- Active Glazing
- Lighting
- Solid Oxide Fuel Cells (SOFC)

We like a glass house...

...but not only...

Numerous insulation solutions

Looking to the future: super insulation

High Performance Insulating Systems

Conductivity vs. Price for $1m^2/R=1$

External Insulation

ETICS

 External Thermal Insulation Composite System

Ventilated façades

SAINT-GOBAIN

From static to active insulation

Glass which reflects heat

Materials that react to heat

• Phase change materials

- Intelligent windows
 - Electrochromic glass

Ultra-thin, transparent silver layers on glass ...

SAINT-GOBAIN

For sophisticated glazing that returns heat back into the room

...and heats!

What is a phase change material?

A material that can store heat or cold

Liquid

Stored heat

2 potential applications

- Comfort in the summer
- Energy savings

Electrochromic glass: it changes color

Electrochromic Glazing

Using fossil fuel more efficiently: Fuel cell CHP

Lighting

Daylighting: a better use of natural light

New technologies from electronics: Light Emitting Diodes (LED) and Organic Light Emitting Diodes (OLED)

Operating principle

LEDs and OLEDs for lighting

LEDs

- A well developed technology
- Mainly for point objects

OLEDs

- Prototypes exist but the technology is just getting off the ground
- Well suited to large surfaces
- May ultimately work on flexible media

Light Emitting Diodes

OLED: Organic Light Emitting diodes

More recent

Lighted interiors

Changing ambiance

Strategic research programs to develop renewable energy sources

Biomass

Bio-sourced materials

Energy efficient, environmentally friendly processes

Solar

- ► Glass for PV cells
- Solar concentrator mirrors
- Thin film PV modules
- Building integrated photovoltaics (BIPV)

Biomass

A renewable energy

• Carbon neutral?

Opportunities for Saint-Gobain

- Second generation biofuels
 - Catalyst media for Fischer-Tropsch fuels
- Direct use
 - Cast iron and glass
- Syngas production

First generation biofuels

First generation biofuels

- Sugar-based alcohol
 - ► Sugar cane
 - Used directly as a fuel
- Biodiesel: an "oil" extracted directly from oilseeds
 - Rapeseed, sunflower seeds, etc.

But raises ethical issues...

Competition with food production

Making cast iron pipes with biomass

Charcoal instead of coke in Brazil

Using biomass to reduce CO₂ emissions

Renedo EcoBoosting project

SCM (submerged combustion melter)

Towards improved energy efficiency and environmental impact in our processes

Energy

- New methods of glass melting
 - Submerged burner
 - Flameless burners
- Reduction of the amount of water in gypsum (plasterboard)

Environment (reduce CO₂...)

- Renewable energy: Biomass
 - ► Glass, Pipes,...
- Electric ovens

Tangible results already achieved

 Energy reduction in glass furnaces

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that."

Thomas Edison 1931

Photovoltaic effect

Photovoltaic cells

First generation: silicon cells

• Single crystal and multicrystalline

Second generation: thin film

• Amorphous silicon, CIGS, CdTe, etc.

Photovoltaics: a host of applications

Solar farms to generate electricity Roof-mounted panels for distributed production Panels for autonomous solutions

A solar farm

Two major challenges

Reduce the cost of

- Modules
- Installation

Integrate panels into buildings

- On rooftops, of course
- But also in:
 - ► Windows
 - ► Walls

Solar: a large number of projects..

See Jean-Pierre Floris's presentation

Cross-business Habitat innovation to meet local market needs

Cross-business programs

- **1.** Anti-microbial surfaces
- **2.** Catalysis
- **3.** Physical/chemical properties of building materials
- **4.** Acoustics
- 5. Cement-based materials
- 6. Energy efficient building skin
- 7. Functional, flexible substrates
- 8. Fire resistance of materials

Acoustics: Duo'Tech

- Plasterboard with very high noise-proofing performance
- Developed by leveraging multiple competencies:
 - Market needs: Placo
 - Skill-set: Flat glass (CRDC)
 - Glue: Weber

Silver medal for innovation at Batimat 2009

Film acoustique

Micro-déformation par cisalliement
Dissipation de l'énergie acoustique
Amortissement des vibrations

Placo[®] Duo'Tech 25

A revolution in plasterboard Plasterboard with very high noise-proofing performance

Physical/chemical properties of building materials

Weber flooring for stores in China

- Developed using our ceramics capability
 - Shanghai Research Center

H&M

Energy efficiency of building envelopes

Better understanding of the role of materials / systems / building

Simulation based on our strong competency in furnace modeling

In situ tests and modeling

Open your eyes...

The states

No.

Contents

Introduction

Habitat and the challenges facing our planet...

Strategic, cross-business programs in response to changing market needs

Increased resources

Budget, patents, research centers, looking outward...

Conclusion

Increased resources

- Evolution of resources
- Patents
- Methodology
 - Project management
 - Portfolio management
- Evolution of the centers of research
- An outward looking R&D
 - Techno Marketing
 - NOVA EV
 - Saint-Gobain University Network: SUN

Increased resources...

R&D expenses in €m and in % sales (excluding Building Distribution)

Number of scientists

965 1,033 1,072 1,132 1,138 1,156 2005 2006 2007 2008 2009 2010

Global number: 3,500 employees

...which have allowed us to increase the number of patents

Number of patents (family of patents)

Four transversal research centers

Centers of interaction to favor exchanges and the emergence of common projects

Aubervilliers France

Domains

Glass; Coatings; Reactive Materials (Mortars, Polymers, Gypsum, Cement); Habitat (lighting, Thermal comfort, etc.)

CREE France

Domains

Ceramics Grains&Powders Catalysis

Northboro United States

Domains

Ceramics; Grains&Powders; Abrasives; Plastics; Crystals Gypsum; Exterior products; Roofing

SGRS (Shanghai)

Domains

Ceramics Abrasives Polymers

An outward looking R&D

Techno Marketing Team

Nova

SUN: Saint-Gobain University Network

Techno-Marketing

At the interface between the evolution of the markets and the evolution of the technologies:

- Develop new markets based on strong technological markets
 - > Ex: SOFC, Solar, External Insulation, Active glazing, etc.
- Develop new technologies for emerging markets
 - Ex: Lighting, Biomass, High performance insulation, etc.

An international team

• 15 people (USA 8, Europe 4, Asia 3)

Managed by Innovative Materials but open to all the Group

- Transversal steering committee
 - Corporate R&D, Marketing, planning + sectors representatives
- To serve all the Group

NOVA: when our innovation originates from start-ups

Objective

Partnerships with start-ups

Diverse modes of collaboration

- Licensing, co-development
- Production agreements and distribution
- Joint ventures, equity investments

A dedicated team to

- Validate technology and market
- Identify relevant start-ups
- Identify potential collaborations
- Pass the baton to the business or R&D

NOVA is now 4 years old

The means

- A dedicated team (6 people) spread over 3 continents
- A specific committee with 8 representative from CP and IM Sectors
- Dedicated legal support from the legal department

The results

- More than 1,400 start-ups examined
- 120 start-ups analyzed in detail, with business support
- 28 contracts signed across all sectors

An academic Network of universities and institutes

Saint-Gobain University Network: SUN

- The latest scientific advances in the academic world
- Access to top level skills
- Research partnerships in emerging countries

A rigorous methodology shared across all sectors

Saint-Gobain Gate Process: a management tool for each project

Sirius: a management tool for the project portfolio

Saint-Gobain Gate Process, a management tool for each project

- Continual evaluation process: the project can be stopped at any gate if the objectives, set in advance, are not met
- Steering Committee with the presence of marketing or relevant industrial branches
- Includes a risk-analysis based on technical, commercial, legal and Health and Safety assessments

Sirius, a management tool of the project portfolio

Consolidation of the

projects in the R&D

centers

Jul-Sept

Discussion between sectors / centers / teams

Sirius Objectives

- To assist in implementing the Group strategy
- To manage our R&D portfolio in an effective manner using the risk-opportunity matrix

Strategic planning

projects update

May -June

Main steps:

Calendar per activities

A dynamic evolution of the project portfolio

Overview

Introduction

- Habitat and the challenges facing our planet...
- Strategic, cross-business programs in response to changing market needs
 - Increased resources
 - Budget, patents, research centers, looking outward...
- Conclusion

Conclusion

Unique differentiating strength to underpin our leadership

A clear road-map

An ambitious R&D organized to serve the innovation needs of the Habitat market

- Reach 25% of new product sales in 2015
- A portfolio of projects generating around €7bn of sales in 2015
 - A profitability above Group average
- For €400m of R&D expenses

SAINT-GOBAIN

Investor day

Innovation: serving the Habitat strategy

Didier Roux

Paris, 15 November 2010

antoriaux de Construction

SAINT-GOBAIN